

Müller-BBM Building Solutions GmbH
Helmut-A.-Müller-Straße 1 - 5
82152 Planegg

Telephone +49(89)3540486 0
Telefax +49(89)999507 62

www.mbbm-bso.com

M. Eng. Philipp Meistring
Telephone +49(89)3540486 38
philipp.meistring@mbbm-bso.com

2025-05-19
B129169/24 Version 1 MSG/JRE

**Curtain fabric type
„lana“**

**Measurement of sound absorption
in the reverberation room
acc. to DIN EN ISO 354**

Test Report No. B129169/24

Consultant:	M. Eng. Philipp Meistring Jan-Lieven Moll
Report date:	2025-05-19
Delivery of the test object:	2025-04-25
Test date:	2025-05-12
Total amount of pages	13 pages, thereof 6 pages text 2 pages Appendix A 1 page Appendix B 4 pages Appendix C

Müller-BBM Building Solutions GmbH
HRB Munich 278753
VAT No. DE355267779

Managing Directors:
Stefan Schierer, Elmar Schröder

Table of contents

1	Task	3
2	Basis	3
3	Test object and test assembly	4
3.1	Test object	4
3.2	Test assembly	4
4	Execution of the measurements	5
5	Evaluation	5
6	Measurement results	5
7	Remarks	6

Appendix A: Test certificates

Appendix B: Photos

Appendix C: Description of test method, test facility and test equipment

1 Task

On behalf of the company Englisch Dekor Handels GmbH, 1210 Vienna, Austria, the sound absorption of the curtain fabric type "lana" was to be measured according to DIN EN ISO 354 [1] in the reverberation room.

The fabric was tested as a curtain in a pleated arrangement with 100 % fabric addition and a clear distance of 100 mm and 200 mm to the reflective wall.

2 Basis

This test report is based on the following documents:

- [1] DIN EN ISO 354: Acoustics - Measurement of sound absorption in a reverberation room (ISO 354:2003); German version EN ISO 354:2003. 2003-12
- [2] DIN EN ISO 11654: Acoustics - Sound absorbers for use in buildings - Rating of sound absorption (ISO 11654:1997); German version EN ISO 11654:1997. 1997-07
- [3] ASTM C 423-23e1: Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. Revision: 23e1. 2024-08
- [4] ISO 9613-1: Acoustics; Attenuation of sound during propagation outdoors; part 1: calculation of the absorption of sound by the atmosphere. 1993-06
- [5] DIN EN ISO 12999-2: Acoustics – Determination and application of measurement uncertainties in building acoustics – Part 2: Sound absorption (ISO 12999-2:2020); German version EN ISO 12999-2:2020. 2020-11
- [6] DIN EN ISO 9053-1: 2019 Acoustics - Determination of airflow resistance – Part 1: Static airflow method (ISO 9053-1:2018); German version EN ISO 9053-1:2018. 2019-03
- [7] DIN EN ISO 5084: Textiles - Determination of thickness of textiles and textile products (ISO 5084:1996); German version EN ISO 5084:1996. 1996-10

3 Test object and test assembly

3.1 Test object

The tested material is described by the client as follows:

- Designation "lana"
- Material 70 % WV, 25 % PA, 5 % AF

The testing laboratory has measured as follows:

(values determined at one sample 210 mm x 297 mm from the test material):

- Thickness acc. DIN EN ISO 5084 [7]
(3 positions, pressure 1.00 kPa, pressure-foot 2000 mm²): $t = 1.04 \text{ mm}$
- Specific air flow resistance acc. DIN EN ISO 9053-1 [6]: $R_s = 1147 \text{ Pa}\cdot\text{s}/\text{m}$
- Area specific mass: $m'' = 394 \text{ g}/\text{m}^2$

3.2 Test assembly

The installation of the test object was carried out at the reverberation room by employees of the testing laboratory.

The mounting details for the tested arrangement are as follows:

- in style of mounting types G-100 and G-200 according to DIN EN ISO 354 [1]
- pleated arrangement, 100 % fabric addition
- clear distance of 100 mm and 200 mm to the reflective wall
- fixed directly underneath the ceiling of the reverberation room, suspended from a metal rail (height of the rail 90 mm, overlap 60 mm)
- test set-up without enclosing frame
- test set-up made of five webs (four webs 1.53 m x 3.00 and one web 0,98 m x 3,00 m), 20 mm overlap at curtain splices
- total dimensions of the test surface (starting at the edge of the metal rail): width x height = 3.51 m x 2.94 m = 10.32 m²

The test certificates in Appendix A and the photographs in Appendix B show further details of the test arrangement.

4 Execution of the measurements

The measurements were executed according to DIN EN ISO 354 [1].

The test procedure, the test stand and the test equipment used for the measurements are described in Appendix C.

5 Evaluation

The sound absorption coefficient α_s was determined in one-third octave bands between 100 Hz and 5000 Hz according to DIN EN ISO 354 [1].

In addition, the following characteristic values were determined according to DIN EN ISO 11654 [2].

- Practical sound absorption coefficient α_p in octave bands
- Weighted sound absorption coefficient α_w as single value

The weighted sound absorption coefficient α_w is determined from the practical sound absorption coefficients α_p in the octave bands of 250 Hz to 4000 Hz.

According to ASTM C 423 [3] the following characteristic values were determined:

- Noise reduction coefficient NRC as single value

Arithmetical mean value of the sound absorption coefficients in the four one-third octave bands 250 Hz, 500 Hz, 1000 Hz and 2000 Hz; mean value rounded to 0.05.

- Sound absorption average SAA as single value

Arithmetical mean value of the sound absorption coefficients in the twelve one-third octave bands between 250 Hz and 2500 Hz; mean value rounded to 0.01.

6 Measurement results

The sound absorption coefficients α_s in one-third octave bands, the practical sound absorption coefficients α_p in octave bands and the single values (α_w , NRC und SAA) are indicated in the test certificates in Appendix A.

Information on the uncertainty of measurement is given in Appendix C. When assigning the absorption group, the measurement uncertainty was not taken into account in accordance with DIN EN ISO 11654 [2].

7 Remarks

The test results exclusively relate to the investigated subjects and conditions described.

M. Eng. Philipp Meistring
(Project manager)

This test report may only be published, shown or copied as a whole, including its appendices. The publishing of excerpts is only possible with prior consent of Müller-BBM.

Testing laboratory accredited by DAkkS according to
DIN EN ISO/EC 17025:2018.
The accreditation is valid only for scope listed in the annex
of the accreditation certificate.

Sound absorption coefficient ISO 354

Measurement of sound absorption in reverberation rooms

Client: Englisch Dekor Handels GmbH & Co. KG
Scheydgasse 29, 1210 Vienna, Austria

Test specimen: Curtain fabric "lana",
arranged as pleated curtain with 100 % fullness, 200 mm distance to reflective wall

Material details

Information provided by the client:

- curtain fabric type "lana"
- material 70 % WV, 25 % PA, 5 % AF

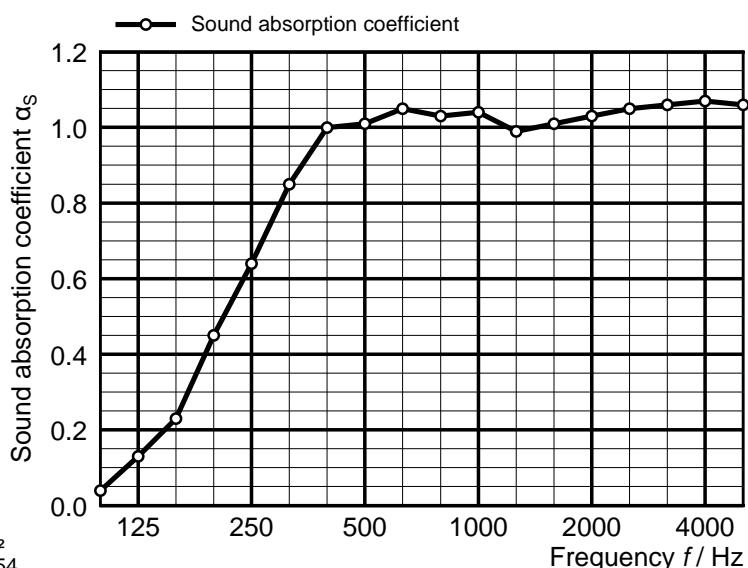
Properties determined by the testing laboratory:

- area specific mass $m'' = 394 \text{ g/m}^2$
- specific airflow resistance $R_S = 1147 \text{ Pa s/m}$ acc. to DIN EN ISO 9053-1
- thickness $t = 1,04 \text{ mm}$

Test arrangement:

- curtain arrangement following type G-200 acc. to DIN EN ISO 354, without enclosing frame
- arranged as a pleated curtain with 100 % fullness hanging in front of a reflecting wall
- test set-up made of five webs (four webs 1.53 m x 3.00 m and one web 0.98 m x 3.00), 20 mm overlap at curtain splices
- fixed directly underneath the ceiling of the reverberation room, suspended from a metal rail (height 90 mm, overlap 60 mm), distance to the back wall 200 mm
- test surface width x height = 3.51 m x 2.94 m (starting at the lower edge of the metal rail)

Room: E


Volume: 199.60 m³

Size: 10.32 m²

Date of test: 2025-05-12

Frequency [Hz]	α_s 1/3 octave	α_p octave
100	0.04	
125	0.13	0.15
160	0.23	
200	0.45	
250	0.64	0.65
315	0.85	
400	1.00	
500	1.01	1.00
630	1.05	
800	1.03	
1000	1.04	1.00
1250	0.99	
1600	1.01	
2000	1.03	1.00
2500	1.05	
3150	1.06	
4000	1.07	1.00
5000	1.06	

	$\theta [^\circ\text{C}]$	$r. \text{ h. } [\%]$	$B [\text{kPa}]$
without specimen	21.6	36.1	94.7
with specimen	21.5	36.3	94.7

○ Equivalent sound absorption area less than 1.0 m²

α_s Sound absorption coefficient according to ISO 354

α_p Practical sound absorption coefficient according to ISO 11654

Rating according to ISO 11654:

Weighted sound absorption coefficient

$\alpha_w = 0.95$

Sound absorption class: A

Rating according to ASTM C423:

Noise Reduction Coefficient NRC = 0.95

Sound Absorption Average SAA = 0.93

Curtain fabric type “lana”

Figure B.1. Test object in the reverberation room: Pleated arrangement, frontal view.

Figure B.2. Test object in the reverberation room: Pleated arrangement, diagonal view.

Description of the test procedure for the determination of the sound absorption in a reverberation room

1 Measurand

The sound absorption coefficient α of the test object was determined. For this purpose the mean value of the reverberation time in the reverberation room with and without the test object was measured. The sound absorption coefficient was calculated using the following equation:

$$\alpha_s = \frac{A_T}{S}$$

$$A_T = 55.3 V \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1} \right) - 4 V (m_2 - m_1)$$

With:

- α_s sound absorption coefficient;
- A_T equivalent sound absorption area of the test object in m^2 ;
- S area covered by the test object in m^2 ;
- V volume of the reverberation room in m^3 ;
- c_1 propagation speed of sound in air in the reverberation room without test object in m/s ;
- c_2 propagation speed of sound in air in the reverberation room with test object in m/s ;
- T_1 reverberation time in the reverberation room without test object in s ;
- T_2 reverberation time in the reverberation room with test object in s ;
- m_1 power attenuation coefficient in the reverberation room without test object in m^{-1} ;
- m_2 power attenuation coefficient in the reverberation room with test object in m^{-1} .

The different dissipation during the sound propagation in the air was taken into account according to paragraph 8.1.2 of DIN EN ISO 354 [1]. The calculation of the power attenuation coefficients was effected according to ISO 9613-1 [4]. The climatic conditions during the measurements are indicated in the test certificates.

Information on the repeatability and reproducibility of the test procedure are given in DIN EN ISO 354 [1] and DIN EN ISO 12999-2 [5]. In [5] for the single-number α_w a standard deviation of reproducibility of $\sigma_R = 0.035$ is indicated. This value was determined from reproducibility data of the test method based on round robin tests and describes the reproducibility of test results that was determined in test laboratories for similar constructions. An aspired confidence level of 95 % results in a coverage factor of $k = 2.0$ and an expanded uncertainty of $U = \pm 0.07$ for the weighted sound absorption coefficient α_w .

2 Test procedure

2.1 Description of the reverberation room

The reverberation room complies with the requirements according to DIN EN ISO 354 [1].

The reverberation room has a volume of $V = 199.6 \text{ m}^3$ and a surface of $S = 216 \text{ m}^2$. Six omni-directional microphones and four loudspeakers were installed in the reverberation room.

In order to improve the diffusivity, six composite sheet metal boards dimensioned 1.2 m x 2.4 m and six composite sheet metal boards dimensioned 1.2 m x 1.2 m were suspended curved and irregularly.

Figure C.1 shows the drawings of the reverberation room.

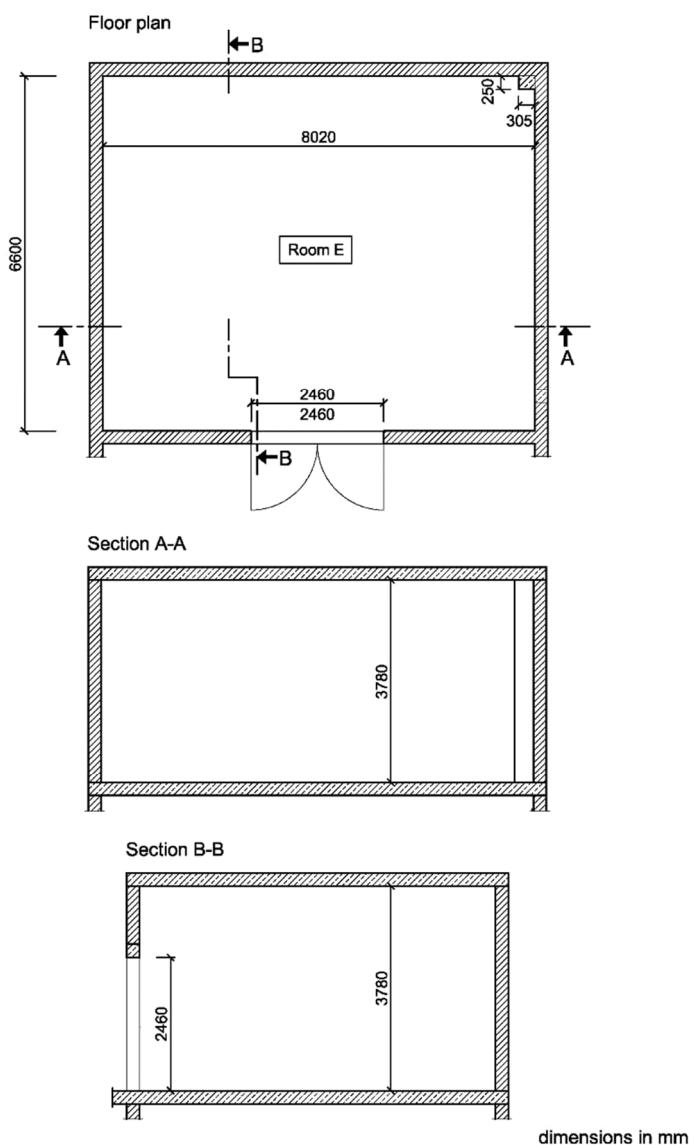


Figure C.1. Plan view and sections of the reverberation room.

2.2 Measurement of reverberation time

The determination of the impulse responses were carried out according to the indirect method. In all tests, a sinusoidal sweep with pink noise spectrum was used as test signal. In the reverberation room with and without test objects each 24 independent combinations of loudspeakers and microphones were measured. The reverberation time was evaluated according to DIN EN ISO 354 [1], using a linear regression for the calculation of the reverberation time T_{20} from the level of a backward integrated impulse response.

The determined reverberation times in the reverberation room with and without test object are indicated in table C.1.

Table C.1. Reverberation times.

Frequency in Hz	Reverberation time T in s		
	T_1 (without test object)	T_2 (with test object)	
	Appendix A, Pages 1 and 2	Appendix A, Page 1	Appendix A, Page 2
100	5.49	5.15	5.14
125	6.08	5.23	4.88
160	6.18	4.68	4.22
200	5.24	3.46	2.99
250	5.68	3.08	2.61
315	5.48	2.42	2.19
400	5.57	2.16	2.00
500	5.60	2.02	1.99
630	5.38	1.92	1.91
800	5.11	1.92	1.90
1000	5.18	1.96	1.89
1250	5.17	1.97	1.95
1600	4.96	1.89	1.90
2000	4.66	1.85	1.83
2500	3.86	1.71	1.68
3150	3.11	1.55	1.51
4000	2.40	1.35	1.31
5000	1.86	1.15	1.14

2.3 List of test equipment

The test equipment used is listed in Table C.2.

Table C.2. List of test equipment.

Name	Manufacturer	Type	Serial-No.
AD-/DA-converter	RME	Fireface 802	23811470
Amplifier	APart	Champ 2	17120171
Dodecahedron	Müller-BBM	DOD360A	372828
Dodecahedron	Müller-BBM	DOD360A	372829
Dodecahedron	Müller-BBM	DOD360A	372830
Dodecahedron	Müller-BBM	DOD360A	372831
Microphone	Microtech Gefell	M370	1355
Microphone	Microtech Gefell	M370	1356
Microphone	Microtech Gefell	M360	1786
Microphone	Microtech Gefell	M360	1787
Microphone	Microtech Gefell	M360	1788
Microphone	Microtech Gefell	M360	1789
Microphone power supply	MFA	IV80F	330364
Hygro-/Thermometer	Testo	Saveris H1E	01554624
Barometer	Lufft	Opus 10	057.0410.0003.9. 4.1.30
Software for measurement and evaluation	Müller-BBM	Bau 4	Version 1.11
Electronic balance	Kern	KB1200-2N	W1402353
Thickness gauge	Hans Schmidt & Co GmbH	D-2000-C0913	2985